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Exploring Data-Efficient Adaptation of Large Language Models for
Code Generation

XUE JIANG, YIHONG DONG, ZHIYUAN FAN, ZHI JIN, WENPIN JIAO, and GE LI*, Key
Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education; School of
Computer Science, Peking University, Beijing, China and School of Computer Science, Northwestern Polytechnical
University, Xi’an, China

Although Large Language Models (LLMs) have made significant progress in code generation, they still struggle with code
generation tasks in specific scenarios. These scenarios usually necessitate the adaptation of LLMs to fulfill specific needs,
but the limited training data available in practice leads to poor code generation performance. Therefore, how to effectively
adapt LLMs to new scenarios with few training data is a major challenge for current code generation. In this paper, we
propose a novel adaptation approach named DEED, which stands for Data-Efficient adaptation with Error-Driven learning
for code generation. DEED leverages the errors made by LLMs as learning opportunities, using error revision to overcome
their own shortcomings, thus achieving efficient learning. Specifically, DEED involves identifying error code generated by
LLMs, employing Self-Revise for code revision, optimizing the model with revised code, and iteratively adapting the process
for continuous improvement. Experimental results show that, compared to other mainstream fine-tuning approaches, DEED
achieves superior performance with few training data, showing an average relative improvement of 46.2% in Pass@1 on
multiple code generation benchmarks. We also validate the effectiveness of Self-Revise, which generates revised code that
optimizes the model more efficiently compared to the code samples from datasets. Moreover, DEED consistently demonstrates
strong performance across various LLMs, underscoring its applicability.

CCS Concepts: « Software and its engineering — Software creation and management; - Computing methodologies
— Artificial intelligence.

Additional Key Words and Phrases: Code Generation, Data-Efficient Adaptation, Large Language Models

1 INTRODUCTION

Code generation is an important technology that can improve the efficiency and quality of software development.
Given the human requirement expressed in natural language, code generation allows machines to generate
executable programs that satisfy this requirement. Code generation has been a research hot topic in the fields
of artificial intelligence, software engineering, and natural language processing. Recently, code generation
technologies have made significant advancements in both academia and industry [13, 23, 24, 57, 59]. In particular,
large language models (LLMs) demonstrate great potential in code generation tasks [11, 28, 36, 54, 75, 77].
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Fig. 1. The performance of direct generation, fine-tuning, and our proposed DEED on MBPP dataset under the circumstance
of limited data. The numbers on the bars indicate the training data used by different methods.

However, LLMs still face significant challenges in code generation for adapting to specific scenarios or domains
(4, 14].

For specific code generation scenarios, fine-tuning is an essential adaptation method to ensure LLMs fulfill
particular needs [9, 16, 45, 60]. However, in these specific scenarios, it is difficult to obtain sufficient training data
for fine-tuning LLMs due to common reasons such as industry secrecy and scarcity of resources. For example, the
programs in aerospace, medical devices, and transportation, where training samples are inherently scarce due to
the scarcity of high-value industry data, high collection costs, and the typical targeting of long-tail demands.
Under the circumstance of limited data, mainstream fine-tuning methods might not enable LLMs to achieve the
desired code generation performance and may even lead to a degradation in model performance [3, 69, 72], as
shown in Figure 1. In such data-scarce scenarios, only a small amount of data is available, but high code generation
performance is still required, which is hard to solve but important in real-world applications. Consequently, how to
effectively adapt LLMs to specific scenarios with limited data available is a major challenge for code generation
in practice.

The mainstream fine-tuning methods use a large number of samples gathered under specific scenarios for
training [68]. They enable the model to exhaustively learn the features present in these samples and thus adapt
to the specific scenarios. However, they have two disadvantages. First, compelling LLMs to relearn the entire
code samples of new scenarios is inefficient. Considering that LLMs are pre-trained on large-scale and diverse
samples, it’s reasonably assumed that they possess a certain level of general knowledge, lacking only particular
information for application in specific scenarios. Second, when faced with insufficient data volume or data drift,
the model may learn certain undesirable features (such as inaccurate or irrelevant programming knowledge and
patterns), thereby affecting its learning efficiency and negatively impacting its final performance.

To overcome the disadvantages of mainstream fine-tuning methods, we take inspiration from the error-driven
learning observed in humans. 1) Error-driven learning requires learners to identify their errors through testing. It
helps learners to identify what they have mastered and what they still need to learn, allowing them to narrow the
scope of learning and avoid wasting efforts on irrelevancies. 2) Through error revision, learners can understand
their deficiencies and make targeted improvements, thus enhancing learning efficiency and effectiveness. This
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motivates us to explore methods to achieve data-efficient adaptation of LLMs for code generation guided by
error-driven learning.

In this paper, we propose DEED, a Data-Efficient adaptation based on Error-Driven learning for code generation.
DEED aims to alleviate the problem of poor code generation performance of fine-tuning LLMs in data-scarce
scenarios. Following the error-driven learning, our method proceeds in four steps: @ Error Code Collection.
We identify and collect error codes generated by LLMs, aiming to mine the weaknesses of LLMs. @ Automatic
Code Revision. To obtain revisions of error codes in a low-cost way, we design Self-Revise to realize automatic
revision leveraging information in the original dataset and code execution feedback. ® Model Optimization.
We optimize the LLMs using the revised code, making them focus on learning the revision of these critical errors,
thereby improving the learning efficiency of LLMs. @ Iterative Adaptation. We adopt an iterative strategy,
which involves repeating the preceding three steps, to continuously optimize and improve the performance of
LLMs.

We extensively evaluate our proposed DEED on five public code generation benchmarks using the test pass
rate metric. Our results show that under the circumstance of limited data, DEED achieves significantly better
performance across various LLMs compared to the mainstream adaptation approaches. Figure 1 illustrates
part of this result. Specifically: 1) On five benchmarks, DEED achieves more than 27.1% relative improvement
in the Pass@1 metric compared to the best-performing adaptation approaches. 2) The effectiveness of Self-
Revise is validated. It produces revised code that better supports the optimization of the code generation model
than the code samples provided in training dataset. 3) Our iterative adaptation process facilitates continuous
enhancements in performance and maintains training stability. 4) DEED proves to be effective across various
LLMs, demonstrating its broad applicability. These results highlight the potential of DEED in addressing the
challenges of code generation in data-scarce scenarios.

To summarize, the main contributions of this paper are:

e We propose that error-driven learning for LLMs adaptation is effective, i.e., utilizing revisions of LLMs’
erroneous outputs for training has higher learning efficiency than samples from the dataset.

e Based on the principle of error-driven learning, we propose a data-efficient adaptation method of LLMs
for code generation, named DEED, which can effectively adapt the model to specific scenarios with few
training data.

e DEED outperforms the mainstream fine-tuning and prompting methods on five code generation datasets
across various LLMs.

2 PRELIMINARY STUDY

Aligning LLMs with<specific scenarios and addressing their unique challenges by learning samples in the dataset
is difficult when training data are limited. We conduct a preliminary study to explore the effectiveness of using
error-driven learning in the LLMs adaptation process of code generation.

We consider the potential significant discrepancy between the model-generated output and the sample in
the dataset. By learning the revisions of the model’s erroneous outputs, we can find more effective navigation
in the optimization process. This might provide a shorter, smoother path to a good local minimum compared
to learning from samples in the dataset, rather than attempting to direct it toward a distant area that may not
align well with its existing knowledge or biases. We conduct a statistical analysis of the discrepancies in the
model’s latent representations. Specifically, on MBPP [5] dataset, we obtain erroneous outputs of CodeGen-2B
[54], revisions of the outputs, and samples in MBPP. We concatenate the requirements with their code, input
them into CodeGen-2B, and extract the hidden representations from the model’s final layer. Then, we compute
the Euclidean distances within the model’s representational space to quantify the disparities between these three
elements. The experimental results show that the average distance between the model’s erroneous outputs and
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Fig. 2. An overview of the proposed DEED and its differences from traditional fine-tuning methods.
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the dataset’s samples is 12.35, whereas the average distance between the erroneous outputs and their revisions is
significantly lower, at 6.39. These experimental results suggest that within the model’s representation
space, revised codes are closer and similar to the erroneous output codes than the original code samples.
This evidence supports our hypothesis of why the error-driven learning method is more efficient from
the perspective of model optimization.

Therefore, our work is determined to explore the use of error-driven learning to achieve a data-efficient
adaptation method, aimed at enhancing the performance of LLMs in specific code generation scenarios.

3 METHODOLOGY

Given a code generation scenario/domain with a limited-sample training dataset Dy, qin = {(r, )}, where each
data pair (r,c) consists of an input requirement r and an associated example of desired output code c. For
a pre-trained LLM My with parameter 6, we aim to adapt My to the specific scenario of D;,qi,. Inspired
by error-driven learning, we propose DEED to achieve data-efficient adaptation of LLMs. DEED consists of
the following four steps: Error Code Collection (§3.1), Automatic Code Revision (§3.2), Model Optimization
(§3.3), and Iterative Adaptation (§3.4). LLMs are well adapted after applying DEED, and their subsequent use
(inference) remains unchanged compared to direct generation with LLMs, while improving the accuracy of
one-time predictions without introducing any additional overhead. The overview of DEED and its differences
from traditional fine-tuning are shown in Figure 2.

3.1 Error Code Collection
In this step, we systematically identify and collect erroneous output of LLMs using testing as criteria. We employ

rejection sampling [8] to draw error code samples from the distribution produced by My. For each requirement
r € Dirain, We sample

¢~ Mo(r) | =f, (1)
where we sample multiple times and employ the criterion function f to determine the retention of the code

sample. Specifically, the error code sample ¢’ is retained when f(r,c¢’) = 0, where f(r,¢’) = 0 if the rejection
condition is satisfied, otherwise 1.

ACM Trans. Softw. Eng. Methodol.
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We define f as a test evaluation function since testing is the criterion for judging the correctness of code in
practice:
0, if¢ fails S,
1, otherwise,

TesTEvVAL(7, ¢') = { (2

where S, is a suit of test cases under the requirement r and is equipped by code generation datasets. When
collecting error codes for test failures, we can keep the failed test cases and error messages simultaneously for
further error diagnosis.

To gain insights into the propensity of My to make certain errors, it is advisable to select error code sample ¢’
for which the model demonstrates relatively high confidence. Therefore, among multiple error codes collected
for the same r, we select the one with the highest generation probability, which is determined by the average
log-probability of each token in the generated code.

, 1
log P(c'|r) = T Z log P(si|s<i,7), 3)
where s; is the i-th output token, s<; denotes the set of previous tokens, and |c’| indicates the length of the code.

3.2 Automatic Code Revision

In this step, we perform automatic revision for error codes using our Self-Revise method. Based on the LLM M,
itself, Self-Revise revises the error code by providing the information in the original dataset and pointing out the
error with code execution feedback. Our objective is to derive a revised code that fixes the critical bug in the
error code. As illustrated by examples (a), (b), and (c) in Figure 2, although there is already a correct code (c)
in the dataset, it may differ significantly from the error code (a), leading to the critical bug being unclear. The
pipeline of automatic code revision is shown in Figure 3. Specifically, we leverage the following parts as the input
of Self-Revise:

e Requirement (r): Clarify the requirement that need to be addressed;

e Correct Solution (g): Provide a type of correct solution as a reference to reduce the difficulty of revision.
The correct solution used here is the code sample ¢ in the training dataset;

o Error Code (c’): Give the error code that needs to be revised. The error code is generated by My under r;

o Error Messages (m) and Failed Test Cases (t): Point out the error messages received during execution
and the specific test cases where the error code fails, allowing for more focused troubleshooting and
revision.

These parts are combined as the input of Self-Revise according to the template:
T = Template(r, g, c’, m, t) (4)

where Template is shown in Figure 3.

Following previous work [21, 73], we use two settings for Self-Revise, i.e., fine-tuning (FT) and few-shot
prompting (FSP), to get Mpevise for revising error codes.

Self-Revise (FT) entails the process of fine-tuning My with a small number of data for the purpose of
automatic code revision. The training objective is to minimize L(0):

L(9) = Z lee(Mg(Ty), ¢; )

where I, represents the standard cross-entropy loss, and we update the parameters initialized with My to obtain
MRevise in Self-Revise (FT).

ACM Trans. Softw. Eng. Methodol.
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Fig. 3. lllustration of automatic code revision.

Self-Revise (FSP) adopts the few-shot prompting technique and leverages k examples of T; and ¢} to construct
the prompt P for aligning My to automatic code revision. In Self-Revise (FSP), MRgevise (-) is defined as My (P || - ),
where || denotes the concatenation operation.

In contrast to the previoeus error code collection step, for each error code ¢’, we construct T and use acceptance
sampling to obtain the revised code c*:

¢* ~ Meevise(T) | f (6)
where c* is retained if TESTEVAL(r, c*) = 1 in Eq. (2), i.e., the revised code c¢* passes its test cases. We sample
multiple times, and it is'sufficient if Mgevise could correctly revise the error code once. To prevent Mgeyise from
simply replicating the provided correct solution g, we exclude the output identical to g. Subsequently, for each
requirement r, select the version that is most similar to the error code among the remaining code revisions.

3.3 Model Optimization

In this step, we employ pairs of the requirement r and its revised code c* to further fine-tune the model My. This
process leads to the enhanced version of My, referred to as My-, in the specific scenario of dataset Dy 4in.
For fine-tuning [17], we update all parameter 6 of LLMs as

0" = arg msin (Z;) lee (Mo (r), %), @)

ACM Trans. Softw. Eng. Methodol.
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When the computational resources are insufficient, we employ Low-Rank Adaptation (LoRA) [31] to fine-tune
LLMs. For a weight matrix W € R¥kK LoRA represents its update with a low-rank decomposition:

W+ AW = W + AaWown Wap, 8)

where « is a tunable scalar hyperparameter, Wyown € RA*r, Wyp € R™ and r << min(r, k). In LoRA, we update
parameter 0" as

0" = 0+ A0, )

A = arg min (Z;) lee (Mono(r). c). (10)
r,c

3.4 lterative Adaptation

The preceding three steps can go through multiple iterations until a certain number of rounds is reached or the
revised code no longer increases.

For I-th iteration that [ > 1, we initialize its initial model My, as the enhanced model of the previous iteration
Mep; . Based on Mp,, we repeat the process in steps of error code collection and automatic code revision to
sample error codes {¢"}; and revised codes {c*};, respectively. Inspired by experience replay [51] in reinforcement
learning, we use the union of collected data in each previous iteration {(r, ¢*)}1; to stabilize the learning process
and improve data utilization efficiency, i.e.,

{(rneHh U U{(ne)}i-- U{(ne) (11)

to update parameters in the model optimization step, thereby yielding the enhanced model of the I-th iteration
Mg;«. At each iteration, the model is trained to convergence.

This iteration is a step-by-step optimization designed to continuously improve the adaptability of models to
the specific scenario. The complete process of DEED is summarized in Algorithm 1.

Algorithm 1 Pseudocode of DEED.

Require: Dataset Dyrqin = {(r, ¢)}, initial LLM Mp.
Ensure: LLM My-.
1: Initial iteration index [ = 0 and My,,, = M.

2: # Iterative Adaptation
3: repeat
4:  Updatel=1+1.

# Error Code Collection
6:  Perform rejection sampling to collect error codes {c’}; based on Mg, via Eq. (1) and (2).

# Automiatic Code Revision
:  Perform acceptance sampling to collect revised codes {c*}; based on My, and Self-Revise via Eq. (2), (4), and (6).
9:  Calculate the union of {(r,c*)},; via Eq. (11).

10:  # Model Optimization

11:  Fine-tune Mg, to yield Mél via Eq. (7) if the computational resources are sufficient, otherwise via Eq. (8), (9), and (10).
12:  Update My,,, = Mg;.

13: until End condition is satisfied

14: return Mo:

ACM Trans. Softw. Eng. Methodol.
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4 EVALUATION SETUP

We present extensive experiments that span five representative code generation datasets, two fine-tuning settings,
and four different LLMs of varying sizes or series. We aim to investigate six research questions:

RQ1: How does DEED perform compared to the mainstream adaptation approaches? This question
aims to investigate the superiority of our method compared to existing approaches in data-scarce scenarios.
RQ2: How does DEED perform when applied to various LLMs? This question explores the usefulness
of DEED across different LLMs, assessing its applicability and performance consistency in varying LLMs.
RQ3: What kind of training sample has the better training effect? This question helps us understand
the promotion of training efficiency by training with the revision of LLMs’ erroneous outputs.

RQ4: How does the number of iterations affect the effectiveness of DEED? This question explores
the changes in LLMs’ performance during the process of iterative optimization, to demonstrate the
necessity of iterative adaptation in our method.

RQ5: What is the impact of implementing the automatic code revision component of DEED in
conjunction with alternative LLMs? We choose to use LLMs themselves for revision, termed Self-Revise.
This question explores the effects of using other LLMs for revision.

RQ6: How does each input component of Self-Revise contribute to the effectiveness? Since Self-
Revise utilizes components such as correct solutions, failed test cases;and error messages, this question
aims to analyze the impact of these components on its performance.

4.1 Datasets

We use five public code generation datasets to simulate the specific scenario with limited data and apply DEED
to each dataset to evaluate its effectiveness. Specifically,

HumanEval [13] is a widely-used code generation benchmark, containing 164 handwritten programming
problems, proposed by OpenAl. Each programming problem includes a function signature, a natural
language description, use cases, a correct solution in Python, and several test cases.

MBPP [5] contains crowd-sourced Python programming problems. We use the version in the work
[10], which consists of 276 problems and some generated error codes alongside their human-revised
counterparts, thus facilitating subsequent experiments.

HumanEval-ET and MBPP-ET [20] are extended versions of MBPP and HumanEval, respectively, where
each includes over 100 additional test cases per problem. This updated version enhances the soundness of
code evaluation compared to the original benchmarks.

DataScience [37] comprises 291 data science problems utilizing Pandas libraries. This dataset can evaluate
the ability of LLMs to utilize specific data-analysis libraries for code generation.

We sample min(200,40% * D) problems from the datasets as D;,q;,, While the remaining problems serve as

Dtest-

4.2 Implementation Details

We use a single’A6000 GPU to conduct all experiments. We select CodeGen-2B [54] as our base model by default,
which is a well-known open-source LLM for code and is suitable for full fine-tuning within our computational
resource constraints. My is initialized to our base model, and Mgevise is derived from My though Self-Revise
(§3.2). In fine-tuning setting, MRgevise 0nly needs to be trained at the beginning and then remains unchanged for
subsequent operations.

For full parameter fine-tuning, i.e., Fine-tuning (Full) [17], we use the AdamW optimizer [48], with hyperparam-
eters f; = 0.9 and B, = 0.9, accompanied by a linear learning rate schedule. The initial learning rate is set to 5e-6,
with a batch size of 1 and gradient accumulation of 32 steps for training across 10 epochs. For parameter-efficient

ACM Trans. Softw. Eng. Methodol.
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fine-tuning, i.e., Fine-tuning (LoRA) [31], the learning rate is set to 2e-4. Additionally, the rank r is adjusted to
128, and the scaling factor « is set at 8. All other hyperparameters remain aligned with Fine-tuning (Full). For
few-shot prompting [6], we set the number of examples in prompt to 4. All baselines in the experiments use
consistent settings.

In the error code collection step (§3.1) and the automatic code revision step (§3.2), we use temperature [2, 29]
sampling to generate multiple samples: 5 samples in the former and 30 in the latter, with the temperature set
to 0.8. To obtain the final revised code in the automatic code revision step, we choose one of the revised codes
exhibiting the minimum Levenshtein distance [39] to the error code. The number of iterative adaptations is set to
2. The maximum generation length is uniformly limited to 1024 tokens.

4.3 Metrics

Following the practice of real software development which utilizes testing for evaluation [1, 58], we employ the
Pass@k [42] metric to measure the functional correctness of the generated code by executing test cases. We use
the unbiased version [13] of Pass@k, where n >= k samples are generated for each problem, count the number
of correct samples ¢ <= n which pass test cases and calculate the following estimator,

n—-—c¢
")
|
)
For automatic code revision, we add the pass@any metric which refers to the percentage of tasks for which
the model generates at least one correct code that passes all test cases.
In the final evaluation of this paper, we set the temperature to 0.8 and generate n = 50 samples, which are then

used to calculate unbiased Pass@k [13] via Eq. (12) in‘all experiments. All evaluation results are averaged over
five test runs.

Pass@k= E 1-

Problems

(12)

5 RESULTS
5.1 RQ1: Comparison of DEED and the mainstream adaptation approaches

Baselines. In this section, we evaluate the effectiveness of DEED by comparing it against four mainstream
approaches used as baselines:

e Direct Generation: We evaluate the LLM directly to demonstrate the performance of the original LLM.

e Fine-tuning (Full): We employ full-parameter fine-tuning for the LLM on Dy, 4ip.

¢ Fine-tuning (LoRA): We fine-tune the LLM on D;,,;, using LoRA [31], which greatly reduces the
number of trainable parameters.

e Few-shot Prompting: We use 4-shot prompt [6] to align LLMs with the input-output format of Dy, 4in,
where 4 examples in prompt are randomly selected from Dy, 4in.

o Self-refine [50] and Self-debug [15] iteratively refine the generated code through prompting techniques.
The number of iterations is set to 2.

Considering the baselines involve full-parameter fine-tuning, CodeGen-2B is uniformly selected as the base
model in this experiment. For DEED, we use 30% data of D;, 4, for Self-Revise (FT)!, while the remaining 70%
data of Dyqin is employed for model optimizing, where we use full-parameter fine-tuning.

1n addition to MBPP dataset, for the other two datasets (i.e., HumanEval and DataScience), we generate one error code per sample in a
subset comprising 30% of the training set, using CodeGen-2B. Subsequently, authors collaboratively apply the minimal necessary revisions to
correct these error codes.
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Table 1. Pass@k (%) of DEED and baselines on HumanEval, MBPP, and DataScience datasets. The values in brackets represent
results on the extended version of the datasets, and the teal number after T denotes the relative improvement of DEED over
the second-highest score.

Datasets Method Pass@1 Pass@5 Pass@10
Direct Generation 24.8% 44.7% 51.8%
Fine-tuning (Full) 29.8% 47.9% 56.4%
HumanEval Fine-tuning (LoRA) 27.4% 46.9% 53.9%
Few-shot Prompting 25.2% 45.8% 53.1%
Self-Refine 25.3% 45.2% 51.9%
Self-Debug 26.4% 46.4% 54.2%
"DEED 38.6% (129.5%) 54.7%  62.2%
Direct Generation 17.0% 30.8% 36.3%
Fine-tuning (Full) 21.5% 34.2% 41.5%
Fine-tuning (LoRA) 20.3% 33.7% 39.9%
HumanBval BT g 0 ot Prompting 19.1% 335%  39.1%
Self-Refine 17.5% 32.6% 38.2%
Self-Debug 19.2% 33.6% 41.0%
"DEED 28.6% (133.0%) 39.3%  46.5%
Direct Generation 15.6% 31.4% 40.2%
Fine-tuning (Full) 25.8% 45.2% 57.6%
MBPP Fine-tuning (LoRA) 19.8% 39.8% 55.2%
Few-shot Prompting 24.4% 38.0% 49.4%
Self-Refine 25.6% 38.8% 50.2%
Self-Debug 20.2% 34.5% 40.6%
"DEED 32.8% (127.1%) 46.8%  64.0%
Direct Generation 10.6% 21.7% 28.2%
Fine-tuning (Full) 18.1% 33.1% 43.7%
Fine-tuning (LoRA) 15.1% 32.5% 42.4%
MBPP-ET Few-shot Prompting 17.5% 27.3% 36.9%
Self-Refine 17.8% 27.6% 37.2%
Self-Debug 14.1% 25.7% 29.6%
"DEED 24.9% (137.6%) 36.3%  49.3%
Direct Generation 0.8% 3.1% 5.6%
Fine-tuning (Full) 2.6% 6.5% 9.6%
DataScience Fine-tuning (LORA) 2.2% 6.0% 8.9%
Few-shot Prompting 1.9% 4.5% 5.7%
Self-Refine 2.1% 4.7% 5.8%
Self-Debug 1.2% 2.8% 4.1%
"DEED 5.3% (1103.8%) 9.5%  12.3%

Results. We conducted experiments on five public datasets, i.e., MBPP, HumanFEval, and DataScience. The
experimental results are summarized in Table 1. This comparison yielded four insightful observations: 1) Signifi-
cant superiority of DEED: Our proposed DEED performs significantly better than the other six baselines on
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the five datasets. Notably, DEED exhibits significant relative improvements of 29.5%, 33.0%, 27.1%, 37.6%, and
103.8%, respectively, when compared to the best-performing baseline Fine-tuning (Full). Self-refine and Self-debug
underperform on small LLMs like codegen-2B. Self-debug excels over Self-refine only on the HumanEval dataset,
where public test cases and results are available. On other datasets, Self-debug relies on the LLM’s generated code
explanations and feedback. Moreover, we find that DEED not only surpasses Self-refine and Self-debug in terms
of performance but also in cost. These methods have a significant disadvantage in cost as they require iterative
refinements for each sample, leading to increased time and token consumption. Their cost is directly proportional
to the number of sampling and the number of iterations, while DEED is free of these two factors during inference.
2) Worst performance of Direct Generation: The performance of Direct Generation is significantly lower than
Fine-tuning (Full), Fine-tuning (LoRA), and Prompt baselines. This result suggests that directly applying LLMs
for evaluation may be less suitable for specific scenarios, resulting in performance differences. 3) Fine-tuning
(LoRA) is less effective than Fine-tuning (Full): Although Fine-tuning (LoRA) offers the advantage of reduced
computational resource requirements for fine-tuning LLMs, it trades off the performance. 4) Less improvement
of Few-shot Prompting: Few-shot prompting is the most commonly used prompting technique; but its main
limitation lies in its difficulty in imparting new knowledge or developing new capabilities in the model. It primarily
assists the model in adjusting its outputs to better align with expected results, therefore its adaptability is limited.

Summary of RQ1: In code generation scenarios with limited training data, DEED exhibits improvements
compared to the mainstream adaptation approaches, achieving relative improvements between 27.2% and
103.9%.

5.2 RQ2: DEED with Different LLMs
Baselines. We use the following types of well-known LLMs to perform DEED, including

o CodeGen-2B and CodeGen-6B [54] are code LLMs trained on natural language and programming data
for conversation-based program synthesis.

e Llama-7B [62] is a general-purpose foundational LLM that has been trained on diverse data to handle a
wide range of tasks, which is developed by Meta.

e Codellama-7B [57] is an open foundational LLM for code generation tasks, derived from continuous
training and fine-tuning based on Llama architecture [62].

Among them, CodeGen-2B uses full fine-tuning, and the remaining LLMs use parameter-efficient fine-tuning
with LoRA. Each LLM has the same baselines as RQ1 (§5.1), i.e., Direct Generation, Fine-tuning, and Few-shot
Prompting.

Results. The results of applying DEED to different LLMs are shown in Table 2. The results demonstrate that DEED
consistently achieves significant improvements across all these LLMs, outperforming the Direct Generation,
Fine-tuning, and Few-shot Prompting baselines. Moreover, we also find that the performances of Code LLMs
are better than pure LLMs, and there is a clear trend indicating that as the number of parameters in the LLMs
increases, the efficacy of the Direct Generation and Few-shot Prompting approaches increases steadily. In contrast,
the effectiveness of DEED on these LLMs is also continuously improving.

Summary of RQ2: DEED consistently enhances performance across all LLMs, outperforming Direct Genera-
tion, Fine-tuning, and Few-shot Prompting baselines, showcasing the applicability of DEED.
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Table 2. Pass@k (%) of DEED and baselines with different LLMs, and the teal number after T denotes the relative improvement

of DEED over Fine-tuning.

Xue Jiang, Yihong Dong, Zhiyuan Fan, Zhi Jin, Wenpin Jiao, and Ge Li

Models Method Pass@1 Pass@5 Pass@10
Direct Generation 15.6% 31.4% 40.2%
Fine-tuning (Full) 25.8% 45.2% 57.6%

CodeGenZB  pow-shot Prompting ___ 204% ___ 38.0%  494%
DEED (Full) 32.8% (127.1%) 46.8%  64.0%
Direct Generation 19.6% 40.2% 60.8%
Fine-tuning (LoRA) 26.6% 46.8% 63.0%

-6B

CodeGen S8 Few-shot Prompting 2627 452% 6027
DEED (LoRA) 33.4% (1 25.6%) 47.4%  67.6%
Direct Generation 13.4% 29.8% 37.4%
Fine-tuning (LoRA) 15.2% 27.4% 34.0%

Hama 7B Few-shot Prompting 1667 202%  338%
DEED (LoRA) 22.0% (1325%) 304%  40.8%
Direct Generation 20.4% 43.8% 52.8%
Fine-tuning (LoRA) 19.9% 42.4% 53.2%

Codellama Tl FewshotPrompting _ 278% 6w 648
DEED (LoRA) 34.8% (125.2%)" 492%  65.8%

5.3 RQ3: The Effect of Training Sample Variants

Baselines. We investigate the influence of different training data on the final adapted model My- to validate the
effectiveness of using revisions of model’s erroneous output for training. The different variants of training data
include:

W/o Training: Direct generation without without any training data.

Raw Dy, qin: All samples in Dy4in, which are the raw requirement and code sample pairs in the dataset.

D¢rainN DEED: The samples of the same problem as DEED in Dy4in

DEED U Dy, 4in:Include not only samples of problems obtained through Self-Revise, but also samples of

other problems in Dy, 4.

e Human-revised Dyyqin: Samples obtained from human revision, which are the pairs of requirement
and revised code of LLM’s erroneous output.

e DEED: Samples obtained through Self-Revise, which are the pairs of requirement and revised code of

LLM’s erroneous output.

Results. As shown in Table 3, we discover that: 1) DEED exceeds Raw Dy,.4n, despite Raw Dy, 4;, having
more training data. This proves that training using revisions produced by Self-Revise is more efficient compared
to using samples in the dataset. 2) The effect of D;,4inN DEED is comparatively weaker, which reveals that
DEED is not simply improved by selecting better problems. 3) DEED U Dy,.4;,, is not as effective as DEED,
which shows that some samples in D;,,;, have negative effects for training. 4) The performance of DEED
surpasses that of the Human-revised Dy, 4;,. This finding may be attributed to a disconnect between the
revision made by humans and the model’s learning expectations. While human revisions are applied to all code
samples in D;yqin, some samples may inherently be challenging for the current model. As such, forced learning
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Table 3. Comparison of the effect of different training data variants.

Variants Pass@1 Pass@5 Pass@10
W/o Training 15.6% 31.4% 40.2%
Raw D;rgin 25.8% 45.2% 57.6%
DirainN DEED 22.4% 33.8% 42.8%
DEED U D;rain 29.2%  44.2% 58.0%
Human-revised Dyrpin 28.0% 46.2% 59.8%
"DEED 32.8%  46.8%  64.0%

from these samples may have counterproductive effects, highlighting a potential limitation in human-revised
Dtrain.

Summary of RQ3: The revisions of error code through Self-Revise surpass.other training sample variants,
including both samples in the dataset and the samples revised by humans, in terms of training efficiency and
effectiveness.

5.4 RQ4: The Effect of Iterations

Baselines. We study the effect of iterations on DEED. We analyze the progression of DEED’s effectiveness across
different iterations, starting from 0 iterations (i.e., generated directly with LLMs) and extending to one, and up to
four iterations.

Table 4. Performance of DEED with the different number of iterations, where NRC indicates the Number of Revised Codes
added in each iteration, and Loss is calculated at the end of training in each iteration.

Iterations Pass@1 < Pass@5 Pass@10 NRC Loss

0 15.6% 31.4% 40.2% - -

31.6% 46.3% 60.6% 31 (+31) 0.0891
32.8% 46.8% 64.0% 41 (+10) 0.0375
33.0% 46.7% 62.6% 43 (+2)  0.0094
33.2% 47.1% 64.0% 44 (+1) 0.0056

W DN

Results. We conduct this experiment on MBPP dataset, and its results are displayed in Table 4. From the results,
we can observe a trend: as the number of iteration rounds increases, the performance of DEED first shows an
increasing trend and then gradually stabilizes. The amount of revised code in each iteration is also increasing,
indicating that errors are continuously discovered, corrected, and learned. Additionally, the results show a
consistent reduction in loss as the number of iterations increases, which affirms the training stability of DEED.
Considering that Pass@10 has oscillations from the 2nd iteration to the 4th iteration, we choose to end after the
second iteration as the final performance of DEED.

Summary of RQ4: As iteration rounds increase, the performance of DEED initially improves and then
stabilizes in Pass@1, and over 98% performance can be achieved in two iteration.
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5.5 RQ5: Automatic Code Revision Based on Other Models

Baselines. We evaluate the performance of automatic code revision and the impact on the final model Mp-,
which is obtained through DEED, when using alternative LLMs to substitute the base model as Mpgeyise- The base
model and alternative LLMs are as follows:

e Base Model: We use CodeGen-2B [54] as the base model for automatic code revision, i.e., Self-Revise.
CodeGen-6B [54]: A variant in the same series as our base model but with a larger parameter count.
Llama-7B [62]: A LLM with different training data and architectures of the base model.
CodeLlama-7B [57]: A code LLM with different training data and architectures of the base model.
ChatGPT [55]: A powerful Al chatbot developed based on LLMs. Since ChatGPT is closed-source and
cannot be fine-tuned, we employ ChatGPT for Self-Revise (FSP).

e GPT-3.5-turbo [56] is an instruction-tuned LLM developed by OpenAl, optimized for dialogue and

efficient inference.
In this experiment, we obtain Mgeyise in both fine-tuning and few-shot prompting settings for comparison, and
M- is consistently fixed as the base model.

Table 5. Comparison of automatic code revisions based on different LLMs and settings as well as their impact on the final
model, where Mpevise represents the Self-Revise model that used during the training and Mg+ represents the final model
that used during the inference. Mpgevige is reported the raw results on the 70% % D;rqin part
and M- is fine-tuned with filtered results as described in §3.2.
MRevise MG*
Pass@1 Pass@10 Pass@any Pass@1l Pass@10

Method

Few-shot Prompting

CodeGen-6B 19.4% 60.1% 70.8% 26.8% 59.0%
Llama-7B 23.5% 67.7% 81.9% 20.8% 54.2%
CodeLlama-7B 20.2% 64.9% 75.0% 25.2% 59.6%
ChatGPT 61.4% 87.3% 92.1% 27.0% 62.4%
GPT-3.5-turbo 59.4% 69.5% 72.7% 29.0% 51.0%
"Base Model .~
(Self-Revise (FSP)) 18.9% 57.1% 69.4% 26.2% 58.2%
Fine-tuning
CodeGen-6B 5.0% 20.3% 26.6% 29.4% 64.2%
Llama-7B 2.7% 8.5% 12.6% 23.2% 58.4%
_Codellama-7B _ __5.1% _ _21.0%_ _ _34.6% _ 240% _ 60.2%
Base Model
(Self-Revise (FT)) 3.9% 18.9% 24.6% 32.8% 64.0%

Results. Table 5 illustrates the experimental results of automatic code revision based on different models, and
we can observe that: 1) Self-Revise (FT) employing the same model as the base model yields the best
performance of Mp-. For baselines using other LLMs in fine-tuning, CodeLlama exhibits superior performance
in terms of Pass@k in MReyise, but its final effectiveness is somewhat compromised. This limitation is attributed
to the divergence in training data and architectural frameworks between CodeLlama and the base model, leading
to inconsistencies in the revised code with the base model’s expectations. In contrast, CodeGen-6B, which is
the same series of the base model with a large parameter, demonstrates slightly lower Pass@k in Mgevise than
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CodeLlama but still achieves commendable results for My-. 2) Although the Pass@k of Self-Revise (FSP) is
higher than Self-Revise (FT) in Mgeyise, it does not perform as well on the ultimate My-. We find this
discrepancy may be due to the Self-Revise (FSP)’s tendency to learn superficial forms, i.e., it often resorts to
directly copying code from the correct solution provided in the prompt, even when explicitly instructed not to in
the prompt. Using ChatGPT as Mgevise results in substantially higher Pass@k compared to using the base model,
does not significantly enhance the final model My-.

To understand why the ChatGPT-based revision underperforms the self-revision model, despite providing
more training data, we identify two reasons: 1) We manually check the revised data and find that although the
quantity of revisions increased, ChatGPT sometimes disregards the instruction to make “minimal necessary
revisions.” Instead, it tends to reference the ground-truth correct code, resulting in substantial changes rather
than minimal fixes. We conduct a further experiment with OpenAI’s GPT-3.5-turbo, and the result is shown in
Table 5. While this issue is less severe and its final performance is better than that of the revision using ChatGPT,
it still did not surpass the Self-Revise (FT). 2) We believe a second reason is the significant capability gap between
ChatGPT and our base model (CodeGen-2B). ChatGPT is a much more powerful model, and some of the revision
knowledge it provides may not be effectively understood and absorbed by CodeGen-2B. Instead, the base model
may simply memorize the patterns, which does not improve its generalization ability. We conclude that this
phenomenon highlights a crucial point: the suitability and quality of data are more important than its quantity.
Qualitative Examples. We use the case study to qualitatively assess the effectiveness of automatic code revision
(§3.2), i.e., Self-Revise (FSP) and Self-Revise (FT) employed by DEED, examples of which are presented in Figure 4.
Upon manual inspection of the outcomes produced by Self-Revise (ESP), two prevalent modification patterns are
identified. First, the removal of redundant code is a common alteration: This includes the deletion of unnecessary
blocks such as “if name == ‘main’ ” and other test codes, which are often extraneous in the context of the desired
output. Second, Self-Revise (FSP) exhibits a tendency to directly copy correct code samples from the prompt. In
contrast, Self-Revise (FT) is capable of making minimal yet effective modifications to the model’s initial error
code outputs, thereby generating the correct code. Based on the observations, Self-Revise (FT) is recommended
as the more preferable approach for automatic code revision within DEED.

Summary of RQ5: The effectiveness of automatic code revision improves with the use of more powerful
LLMs. However, using the LLM consistently with the final optimized LLM and under the fine-tuning setting is
most beneficial for the final performance.

5.6 RQ6: Ablation Study of DEED

Baselines. We further perform the ablation study to investigate the effectiveness of each input component in
DEED. Requirements and error codes are the indispensable basic inputs for performing automatic code revision.
Therefore, we perform ablation experiments on the remaining three components, i.e., correct solution, failed
test cases, and error messages. By removing these components individually, we observe their specific impact
on the performance of automatic code revision and the final model, and thus evaluate the effectiveness of these
components.

Results. We conduct the ablation study on MBPP dataset as shown in Table 6. First, we find that removing the
failed test cases resulted in the largest drop in performance of all metrics. Failed test cases can demonstrate the
inconsistency between the model-generated code output and the desired output, allowing LLMs to reason about
and correct erroneous operations. Experimental results show that this point is most helpful for automatic code
revision. Second, removing error messages also results in a loss of performance. Error messages directly indicate
surface errors in the generated code (such as syntax errors and runtime errors) and the location of the errors,
which is also helpful for LLMs to revise the code. The correct code samples in the dataset can provide some
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Casel Requirement Case IT Requirement
Write a function to perform index wise addition of tuple elements in the given Write a function to check if the common elements between
two nested tuples. two given lists are in the same order or not.
Revision of error code Revision of error code
— def add_nested_tuples(test_tupl, test_tup2): def same_order(11, 12):
% - return tuple(map(lambda x, y: (x[@] + y[@]l, x[1] + y[1]), test_tupl, = if len(11) != len(12):
[ test_tup2)) - return False
TI; = - for i in range(len(11)):
" —if __name__ == "__main__": = if 11[i] !'= 12[i]:
> = import doctest = return False
g = doctest.testmod() = return True
o + return tuple(tuple(map(sum, zip(tupl, tup2))) for tupl, tup2 in + common_elements = set(11) & set(12)
] zip(test_tupl, test_tup2)) + 11 = [e for e in 11 if e in common_elements]
v + 12 = [e for e in 12 if e in common_elements]
+ return 11 == 12
Sample code in dataset Sample code indataset copy
def add_nested_tuples(test_tupl, test_tup2): def same_order(11, 12):
res = tuple(tuple(a + b for a, b in zip(tupl, tup2)) for common_elements = set(11) & set(12)
tupl, tup2 in zip(test_tupl, test_tup2)) 11 = [e for e in 11 if e in common_elements]
return (res) 12 = [e for e in 12 if e in common_elements]
return 11 == 12
Case 1 Requirement Case I Requirement
Write a function to extract all the pairs which are symmetric in the given tuple list. Write a function to remove odd characters in a string.
Revision of error code Revision of error code
—_ def extract_symmetric(test_list): def remove_odd(strl):
- symmetric_pairs = set() new_str = "
_"‘_-_ for i in range(len(test_list)): for i in range(len(strl)):
[} - for j in range(i+l, len(test_list)): _ if i %2 ==0:
L - if test_list[i] == test_list[jl: + if not i % 2 == 0:
5 =) symmetric_pairs.add((test_list[i], test_list[jl)) new_str += stri[il
o + if test_list[il[::-1] in test_list: return new_str
w + symmetric_pairs.add(tuple(sorted(test_list[il)))
E return symmetric_pairs
(%]
Sample code in dataset Sample code in dataset
def extract_symmetric(test_list): def remove_odd(strl):
temp = set(test_list) & {(b, a) for a, b in test_list} str2 = '
res = {(a, b) for a, b in temp if a < b} for i in range(1, len(strl) + 1):
return (res) if(i % 2 == 0):
str2 = str2 + stri[i - 1]
return str2
. . . « « s . T . ..
Fig. 4. Cases for two settings of Self-Revise, where “-” and “+” respectively indicate lines of code before and after revision.

Table 6. Effectiveness of each input component in DEED, where Mgevise represents the Self-Revise model that used during
the training and My- represents the final model that used during the inference.

Method MRevise

M-

Pass@1 Pass@10 Pass@any Pass@1 Pass@10
DEED 3.9% 18.9% 24.6% 32.8% 64.0%
- Correct Solution 3.4% 15.4% 19.8% 30.1% 61.9%
- Error Messages 3.1% 14.2% 17.3% 28.6% 58.7%
- Failed Test Cases 2.3% 5.1% 6.3% 26.1% 47.6%
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reference for revising errors of LLMs, thus reducing the difficulty of correction. We find that the performance
of our method without the correct solution drops a little (less than 4%) compared to the original method. It is
still more effective than five existing methods (i.e., Fine-tuning (Full), Fine-tuning (LoRA), Few-shot Prompting,
Self-Refine, Self-Debug) as detailed in Table 1.

Summary of RQ6: The analysis of the ablation study indicates that all of the input components in Self-Revise
positively contribute to the effectiveness of automatic code revision and the final model.

6 RELATED WORK
6.1 Adaptation of LLMs

Many tasks rely on adapting LLMs to multiple downstream applications. Such adaptation is usually done via
fine-tuning, which updates all the parameters of the pre-trained model. Since LLMs contain a large number of
model parameters and performing full parameter tuning would be very expensive, a number of parameter-efficient
fine-tuning approaches [31, 38, 41] have been developed. Adapter tuning [30, 32] inserts small trainable modules,
known as adapters, into pre-trained models. These adapters are usually simple neural networks (e.g., feedforward
neural networks) inserted between layers of LLMs. Prompt tuning [38, 47] creates and tunes a small set of artificial
tokens, known as a “soft prompt,” that is prepended to the input text. These soft promptsare not human-readable
text but are instead learned parameters that are optimized during training. Prefix tuning [41, 46] adds a sequence
of continuous vectors, known as a “prefix,” to the input of each layer of the transformer model. These prefixes are
trainable parameters and are optimized during the tuning process. Actually, prefix tuning can also be regarded
as deep prompting tuning. Low-rank adaptation [31] modifies the LLMs by adding low-rank matrices to the
model’s parameters. These lightweight tuning approaches typically achieve near-full fine-tuning performance
while reducing the number of parameters required for training. They primarily optimize the efficiency of training
the model parameters but are not directly targeted at improving the efficiency of data sample usage.

Another approach of adaptation that does not require training is prompting [44], which depends on in-context
learning [7, 19]. By utilizing natural language instructions and a few examples of a task, this approach enables
LLMs to recognize and execute new tasks without explicit gradient updates. However, a limitation of this approach
is that the models often merely mimic the surface form of the prompt, struggling to deeply understand or adapt to
complex and abstract task requirements. Moreover, this approach can be highly sensitive to the specific phrasing
of the prompt, leading to variability in the quality and consistency of the generated outputs [26].

Recent advancements ininstruction tuning have leveraged LLMs to synthesize extensive data from initial data,
enhancing the ability of LLMs to follow instructions. Works such as self-instruction [64], code evol-instruct [49],
and oss-instruct [66] approach the problem from the perspective of data augmentation. In contrast, our work
focuses on improving the learning efficiency of the models.

Our approach is orthogonal to the aforementioned adaptation techniques, allowing for its concurrent application
with these approaches to enhance overall effectiveness.

6.2 Code Generation with LLM

The rise of pre-training techniques has brought new momentum to the field of code generation. Against this
backdrop, LLMs, such as Codex [13], CodeGen [53], AlphaCode [42], CodeGeeX [77], and CodeLlama [57] have
emerged, greatly enhancing the performance of code generation.

For LLM-based code generation, there are some methods to refine the outputs produced by LLMs. Self-refine
[50] enables LLMs to provide feedback on and correct their own generated content. Self-debug [15] allows the
LLMs to explain and refine their generated code based on execution results. They belong to prompting methods
that are constrained by input length and highly sensitive to prompts [76]. Moreover, Self-edit [73] involves
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training an additional editor. This category of methods treats refinement as a post-processing step after code
generation, whereas we utilize a self-revise to assist the model in efficient training and thereby enhance the
model itself. Compared to these post-processing methods, DEED only requires test cases during training. When
training is complete, DEED can be directly used without incurring any additional resource or time costs.

Recently, Chen et al. [10] propose an ILF method focused on using human feedback to refine model results.
However, it necessitates continuous human involvement and the provision of feedback throughout the model’s
training phase, which incurs significant costs in practical applications. Chen et al. [12] propose a distillation
method that employs ChatGPT [55] to generate a large amount of refinement to train small models. However,
this method presents two primary limitations. Firstly, it necessitates a highly performant “teacher” model,
significantly surpassing the capabilities of the “student” model. Secondly, commercial constraints and other
factors likely prohibit its implementation. Furthermore, in parallel to our work, Ding et al. [18] propose CYCLE,
which enhances the model’s self-refinement capability to correct erroneous predictions in previously generated
programs according to the test results, rather than focusing on improving the accuracy of a single, one-time
prediction, as is the focus of our approach.

In contrast, our work is an adaptation approach, focusing on obtaining a better model adapted to specific
domains with limited data. By exploiting the inherent potential of LLMs to achieve error-driven learning, we
improve the learning efficiency of LLMs.

7 THREATS TO VALIDITY

There are three major threats to the validity of our work.

1) Threats to external validity concern the quality of experimental datasets and the generalizability of our
results. First, we simulate specific code generation scenarios with five public code generation datasets, which
are mainstream benchmarks and have been used in many related works [33-35, 65, 74]. Second, DEED can be
applied to any LLMs, and we choose four well-known LLMs [43,67, 70, 71] of different sizes, training data, and
architectures for our experiments.

2) Threats to internal validity involve the impact of hyperparameters. Deep learning models are known to be
sensitive to hyperparameters.For our proposed DEED, we only do a small-range grid search on hyperparameters,
including iterations of DEED, learning rates, and training epochs, leaving other hyperparameters the same as
those in previous studies [6, 31, 54, 57, 61, 62], which have explored effective settings of the hyperparameters
through extensive experiments. For the baselines, their settings are consistent with our approach.

3) Threats to construct validity pertain to the reliability of evaluation metrics. To address this threat, we
employ Pass@k [42] as the evaluation metric, which leverages test cases to gauge the functional correctness
of code. Additionally, we employ the unbiased version of Pass@k [13] to diminish evaluation errors that arise
from sampling. Pass@k is the mainstream metric for code generation and is widely used in previous studies
[20, 25, 525 63]. On this basis, each experiment is run five times, and its average result is reported.

8 LIMITATIONS

In this section, we analyze two limitations of DEED as follows.

First, our approach requires test cases. The key point to emphasize is that we only need test cases during the
preprocessing stage of training data production. At this stage, we have both the requirements and the ground
truth code, which is an important premise. Therefore, during the preprocessing stage, obtaining some test cases is
not difficult. We can generate a large number of candidate test cases using traditional methods [27] or LLMs [11]
and filter out the correct test cases using the ground truth code [43], which we leave as future work. Compared
to test cases, what is truly scarce are the pairs of requirements and ground truth code. Our approach focuses on
improving the model’s performance in this more urgent need.
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Second, DEED is only used in low-resource scenarios. Limited training data is a realistic and key problem
existing in the real world, which is usually more difficult to solve. In this paper, we try to give an effective
approach to address this problem and demonstrate that our approach can achieve significant improvements in
the experiments of low-resource settings.

9 CONCLUSION

In this work, we have proposed DEED, a Data-Efficient adaptation with Error-Driven learning for code generation,
improving the code generation performance of LLMs in specific scenarios with limited samples. DEED outperforms
mainstream adaptation approaches (e.g., full-parameter fine-tuning, LoRA, and few-shot prompting) with limited
training data on five code generation benchmarks. Our analysis indicates that LLMs can learn more efficiently by
learning from the revisions of their error than by traditionally learning from code examples in datasets. Extensive
results show that DEED can largely enhance five different LLMs of varying sizes or series, which proves its
applicability. We believe that improving the LLMs’ learning efficiency and adapting LLMs with fewer samples
has a broad application in real-world scenarios. We leave this area of exploration for future work.
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A EFFECT OF TRAINING DATA SIZE ON PERFORMANCE

We investigate the effect of training data size on performance. This experiment is conducted on MBPP dataset,
and the results are presented in Figure 5. As the amount of training data decreases, our approach consistently
outperforms both the Direct Generation with base model and the Fine-tuning method. The Fine-tuning method
exhibits a much steeper performance decline as data is reduced, quickly underperforming the Direct Generation,
which suggests it is more prone to overfitting. However, our method can learn effectively from scarce data.

35

—e— Our Approach
Fine-tuning
--- Direct Generation

Pass@1

104 —

40 35 30 25 20
The Number of Revised Codes for Training

Fig. 5. Performance analysis with varyingsizes of training data on MBPP dataset.

Furthermore, we also find a useful case study that helps illustrate the learning capabilities of our approach.
One error pattern in the MBPP data is that the model (CodeGen-2B) fails to import Python libraries used in the
code. We observe that even after removing all training samples that corrected for a specific missing library, the
model can still learn to import it by generalizing from samples involving other libraries. This suggests that the
model can learn more generalizable error patterns from existing data.

B PROJECT-LEVEL CODE GENERATION WITH DOMAIN-SPECIFIC EVALUATIONS

We conduct a further evaluation on Evocodebench [40]. Evocodebench is a project-level code generation dataset
designed to address the problem of data leakage [22] in evaluation. It achieves this by continuously evolving
its data from real-world software projects, while also focusing on domain-specific assessments. Following the
original benchmark’s methodology, we use the natural language (NL) requirements, function signatures, and
surrounding code as prompts. Performance is then measured against the provided test cases using the Pass@k
metric. For this evaluation, we use the “camp zifnerf” project of Evocodebench, which contains 49 scientific and
engineering samples, and randomly split them into training and test sets at a 2:1 ratio.

The results are shown in Table 7. Our method outperforms the Direct Generation and Fine-tuning baselines
across Pass@1, Pass@5, and Pass@10 metrics. This result demonstrates the effectiveness of our approach in real
data-scarce scenarios. Furthermore, this performance indicates DEED’s broad applicability, proving its efficacy
for domain-specific, project-level tasks.
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Method Pass@1 Pass@5 Pass@10
Direct Generation 24.0% 46.7% 50.0%
Fine-tuning 26.7% 44.4% 46.7%
DEED 28.0% 51.1% 53.3%

Table 7. Performance of DEED on Evocodebench dataset.

THE INSTRUCTION FOR AUTOMATIC CODE REVISION

We use a reasonable instruction at the beginning of the prompt for automatic code revision. All baselines use the
same prompt. The specific instruction is as follows:

“I've encountered an error code. I will show you the correct code snippet and ask for
your assistance in fixing the error based on that correct code with minimal. necessary
revisions.”
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